	0		0	0			0	0	0	0	0	0				TEBERAL		DUC47004	
	1	1	1			*	1	1	1	1	1	1				ISLA	MABAU	/	
	2	2	2	2			2	2	2	2	2	2						ar.	
		3	3	3			3	3	3	3,	3	3		Answ	er Sl	neet No			
	4	4	4	4			4	4	4	4	4	4							
	(5)	(5)	(5)	(5)			⑤	(5)	(5)	(5)	(5)	(5)		Sign.	of C	andidate			_
	6	6	6	6			6	6	6	6	6	6							
	7	7	7	7			7	7	7	7	7	7							
	8	8		8			8	3	8	8	8	8		Sign.	of In	vigilator	The second, or second		-
	9	9	9	9			9	9	9	9	9	9							
Section – A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil. PHYSICS HSSC-I SECTION – A (Marks 17) Time allowed: 25 Minutes															کړي				
Fill the relevant bubble against each question: مرحوال کے سامنے دیے گئے درست دائرہ کو پر کریں۔																			
1.	Which pressu	of thure?	ne foll	owing	; is the	e base	e uni	t of () kg	ms^{-1}		\bigcirc	kg m ⁻¹ s	s ⁻²	0	$kg m^2 s^{-2}$	($\int kg m^{-2} s^{-1}$	
2.		The e			ent of ra) 1%	0	2%		\circ	3%	(4%			
3.	If $A_x = \overline{A}$ an	•		the a	ingle b	etwee	en ved	ctor (30	0	45°		0	60°	(90°			
4.	produ	cts of	two	vecto	scalars \overline{A}	and	\overrightarrow{B}		30	0		0	○ 45°			60°	() 90°	
5.	Distance covered by a freely falling body in9.8 <i>m</i>												4.9 m		0	29.4 m	() 19.6 m	
6.		ction			speed X-axis,) 3s			0	4 <i>s</i>		0	5 <i>s</i>	() 6s	
8	If the r	radius	of mo	oon is	1600	km a	nd g	on					5944-0-2014-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-						
7.	the su					$1S^{-2}$,	then	the () 160	00 <i>ms</i> ~	-1	\bigcirc	1800ms	2-1	\bigcirc	$2000ms^{-1}$	($2263 ms^{-1}$	
8.						cond h	nand o	$\int \int \frac{\pi}{2}$				0	$\bigcirc \frac{\pi}{3}$			$\frac{\pi}{4}$	($\supset \frac{\pi}{30}$	
9.	Which velocit		e follo	owing	is TR	UE fo	or orb	rbital				\bigcirc				$v \propto \frac{1}{r}$		$\int v \propto \sqrt{r}$	
10.	A 2m appea efflux i							2.4	12 ms	-1	0	3.42 ms	2 ms ⁻¹		4.42 ms ⁻¹	($\int 5.42 ms^{-1}$		
11.	For wh	nat dis of its	placer maxim	ment i	the P.E alue?	beco	mes o	one () x =	= x ₀	v	0	$x = \frac{x_0}{2}$		0	$x = \frac{x_0}{\sqrt{2}}$	($x = \frac{x_0}{4}$	

ROLL NUMBER

Version No. 8

0

3

1

A simple pendulum suspended from the $\bigcirc \frac{T}{g}$ ceiling of a lift has time period T, when the lift is at rest. When the lift falls freely, the time \bigcirc 0 $\bigcirc \frac{g}{T}$ O Infinite period is: Increase in velocity of sound in air for $1^{\circ}C$ \bigcirc $1.61 ms^{-1}$ \bigcirc 61.0 ms⁻¹ $\bigcirc 0.61 \, ms^{-1}$ \bigcirc 0.16 ms⁻¹ 13. rise in temperature is: The distance between two consecutive \bigcirc λ $\bigcirc \frac{\lambda}{2}$ \bigcirc 2 λ crests or troughs is equal to: It is possible to distinguish between O Polarization O Diffraction transverse and longitudinal waves from the
Refraction Reflection property of: For isothermal process, first law of $\triangle Q = \Delta U$ $\triangle Q = 0$ $\triangle Q = -\Delta U$ $\triangle Q = \Delta W$ thermodynamics can be written as:

Important formulae:

$$V_{sphere} = \frac{4}{3}\pi r^3$$

•
$$g = 9.8 ms^{-2}$$

$$T_{flight} = \frac{2v_i \sin \theta}{g}$$

•
$$|\overline{A} \cdot \overline{B}| = AB \cos \theta$$

$$v_{esc} = \sqrt{2gR}$$

$$|\overline{A} \times \overline{B}| = AB \sin \theta$$

$$v_2 = \sqrt{2g(h_1 - h_2)}$$

•
$$S = r\theta$$

$$P.E_{inst} = \frac{1}{2}kx^2$$

$$P.E_{\text{max}} = \frac{1}{2} kx_0^2$$

$$\omega = \frac{\theta}{t}$$

$$v_t = v_o + (0.61)t$$

•
$$v_o = 332 ms^{-1}$$
 at $0^{\circ}C$

$$T = 2\pi \sqrt{\frac{l}{g}}$$

$$\circ \qquad C_p - C_v = R$$

----1HA-I 2208-3081 (L) -----

ROLL NUMBER

PHYSICS HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 68

NOTE: Answer any FOURTEEN parts from Section 'B' and attempts any TWO questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION - B (Marks 42)

Answer any FOURTEEN parts. All parts carry equal marks. Q. 2

 $(14 \times 3 = 42)$

- From the Stokes' law, the drag force can be expressed as $F_D = 6\pi\eta rv$, then find the dimensions of co-(i) efficient of viscosity η ?
- \overline{A} and \overline{B} are two mutually pendicular vectors equal in magnitude. Show their sum and difference (ii) through Head to Tail Rule with neat diagram.
- Given $|\overline{A}|=3.2$, $|\overline{B}|=5.1$ and $\theta=60^\circ$ between \overline{A} and \overline{B} . Find $|\overline{A}\cdot\overline{B}|$ and $|\overline{A}\times\overline{B}|$ (iii)
- Briefly explain the circumstances in which velocity \vec{v} and acceleration \vec{a} of a car are: (iv)
 - Anti parallel (b)
- The horizontal range of a projectile is 4 times of its maximum height (R = 4H). What is its angle of (V)
- When a rocket re-enters the atmosphere, its nose cone becomes very hot. Where does this heat energy (vi) come from?
- Express power (P) as scalar product of force (\overline{F}) and velocity (\overline{v}). (vii)
- Derive a mathematical relation for orbital velocity and prove that $v_o \propto \frac{1}{\sqrt{n}}$ (viii)
- A circular disc of 49kg and radius 50cm is rotating at a speed of 120 rev/min. Calculate its K.E? (ix)
- Explain how swing is produced in a fast moving cricket ball? (Bernoulli effect) (x)
- What is meant by banking of roads? Also show that $v = \sqrt{gr} \tan \theta$ (xi)
- The deviation of second order diffracted image formed by an optical grating having 5000lines / cm is 32°. (xii) Calculate the wavelength of light used.
- A body of mass m suspended from a spring with force constant k, vibrates with f_1 . When its length is (xiii) cut into half and same body is suspended from one of the halves, the frequency is f_2 . Find out $\frac{f_1}{f_2}$?
- Why does sound travel faster in solids than in gases? (xiv)
- What will be the wavelength of the note emitted by a closed organ pipe 32.4cm long at 0°C? (XV)
- Prove that speed of sound through Hydrogen is 4 times as compared to its speed in Oxygen. Whereas (xvi) $\rho_{Hydrogen}: \rho_{Oxygen} = 1:16$
- An oil film spreading over a wet footpath shows colours. Explain how does it happen? (xvii)
- (xviii) If the Young's double slit experiment is performed in water, what will happen to the interference pattern?
- (xix) Briefly explain the working principle of Carnot engine.
- Discuss that increase in entropy means degradation of energy. (XX)

SECTION - C (Marks 26)

Attempt any TWO questions. All questions carry equal marks. Note:

 $(2 \times 13 = 26)$

Explain vector and scalar products of two vectors with neat diagrams. Q. 3 a.

(05)

b. Describe time of flight and range of projectile using diagram. Derive mathematical formulae

(04)

Show that $S = v_i t + \frac{1}{2} a t^2$ is dimensionally correct. C.

(04)

State and explain Bernoulli's Equation giving all details of it with diagram. Q. 4 a.

(05)

Show that earth's gravitational field is a conservative field. b.

(04)

The earth rotates on its axis once a day so that its original time $T_1 = 24$ hours. Suppose, by some process c. the earth expands so that the radius becomes double as large as at present. Determine T_2 (new time

required for one revolution) after expansion using law of conservation of angular momentum.

Q. 5 Show that motion of a simple pendulum is SHM. Derive formulae for its time period. (05)a.

(04)

(04)

Prove that $v_t = v_0 + (0.61)t$ Derive $C_p - C_v = R$ C.

(04)

b.

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

$$\bullet \qquad R = \frac{vi^2 \sin(2\theta)}{g}$$

$$\bullet H = \frac{vi^2 \sin^2 \theta}{2g}$$

Important formulae:

•
$$K.E_{rot} = \frac{1}{2}I\omega^2$$

$$\bullet \qquad I_{disc} = \frac{1}{2} mr^2$$

•
$$I_{sphere} = \frac{2}{5} mr^2$$